NATIONAL UNIVERSITY OF PHARMACY
Department of Educational and Information Technologies

BIOPHYSICS, PHYSICAL METHODS OF ANALYSIS
Lecture 1

echanical oscillations and waves.
Biophysics of muscle contraction.




Plan of the Lecture

1. Characteristics of periodic motion.
2. Simple harmonic motion (SHM).
3. Energy in SHM.

4. Damped oscillations.

5. Types of mechanical waves.

6. Types of muscles.

/. Muscle fiber, muscle cell.

8. Muscle Contraction.

9. Force-Velocity Relationship.

10. Hill Equation.
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The subject of the course “Biological Physics and Physical Methods of Analysis”
IS the knowledge of the physical processes occurring in biological environment,
the impact of external factors on living organisms and physical methods of
analysis used in pharmacy.

“Biological Physics and physical methods of analysis” is one of the fundamental
general subjects that forms the theoretical basis for highly qualified specialists
training for pharmacy. The studying of the course forms basic understanding of the
properties and the forms of motion, the most important physical laws that
are /fundamentals of mechanical, thermal, electrical, magnetic, spectral,




What causes periodic motion?

 |If a body attached to a spring
Is displaced from its
equilibrium  position,  the
spring exerts a restoring force
on It, which tends to restore
the object to the equilibrium
position. This force causes
oscillation of the system, or
periodic motion.

Figure at the right illustrates
the restoring force F,.

F, =—kx

ma = —kx
d’x Kk
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(@)

x > 0: glider displaced
to the right from the
equilibrium position.

F.<0,s0a, <0:
stretched spring
pulls glider toward
equilibrium position.

(b)

x = 0: The relaxed spring exerts no force on the
glider, so the ghder has zero acce Iu ition.
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x < 0: glider displaced
to the left from the
equilibrium position.
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F.>0,s0a, > 0:
compressed spring
pushes glider toward
equilibrium position.
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Characteristics of periodic motion

The amplitude, A, is the maximum magnitude of displacement
from equilibrium.

The period, T, is the time for one cycle.
The frequency, f, is the number of cycles per unit time.
The angular frequency, w, is 2w times the frequency: @ = 2nf.

The frequency and period are reciprocals of each other:
f=1Tand T = 1/.



Simple harmonic motion (SHM)

* When the restoring force is directly proportional to the displacement from
equilibrium, the resulting motion is called simple harmonic motion (SHM).

* An ideal spring obeys Hooke’s law, so the restoring force is F, = —kx, which
results in simple harmonic motion.

Restoring force F Ideal case: The restoring force obeys Hooke’s
law (F, = —kx), so the graph of F versus x is a
x<0 W - '
straight line.
F.>0
:_ Restoring force F,
: .
N
D' l ; \\ ...............
isplacementx M\ = [, .
p *Typical real case: The
restoring force deviates
x>0 from Hooke’s law ...
F < ;
* Displacement x
The restoring force exerted by an idealized ]
spring is directly proportional to the ..but F, = —kxcanbe a N
displacement (Hooke’s law, F, = —kx): good approximation to the force ™
the graph of F, versus x is a straight line. if the displacement x is sufficiently small.
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Characteristics of SHM

» For a body vibrating by an ideal spring:

/ _ow_ 1 / _1_27 _o5_ M
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*  Follow Example below.

(a) Find force constant k of the spring

(b) Find angular frequency, frequency, and period of oscillation

(a) F=60N
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Displacement as a function of time in SHM

» The displacement as a function of X1l Ly

time for SHM with phase angle ¢ Xmax = A %727\

IS X = Acos(wt + ¢). (See Figure 5 { | ; | |

at right.) \:/ T \/ 5T \[
— = —A | : ! :

. X
max

¢ Changing m, A, or k changes the

graph of x versus t, as shown

below.
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(a) Increasing m; same A and k (b) Increasing k; same A and m (¢) Increasing A; same k and m

Mass m increases from curve Force constant k increases from Amplitude A increases from curve

[ to 2 to 3. Increasing m alone , curve I to 2 to 3. Increasing k alone 1 to 2 to 3. Changing A alone has

X increases the period. - decreases the period. X no effect on the peuod
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Displacement, Velocity and Acceleration

« The displacement as a function of time for SHM with phase angle ¢ is:
X(t) = Acos(awt + ¢)

« Asalways, velocity is the time-derivative of displacement:

V. (1) =% — _wAsin(wt + ¢)

» Likewise, acceleration is the time-derivative of velocity (or the second
derivative of displacement):

dv, d°x
L= —— =—w’Acos(wt + ¢)

dt dt

a,(t) =




Energy in SHM

* The total mechanical energy E = K + U Is conserved in SHM:

E =% mv,2 + % kx? = % kA? = constant

E=K+U

E=K+U E=K+ U E=K+ U
E is all potential E is partly potential, E is all kinetic E is partly potential, E is all potential
energy. partly kinetic energy. partly kinetic energy.

energy. energy.




The simple pendulum

Other systems can show SHM.

Consider a simple pendulum that
consists of a point mass (the bob)
suspended by a massless, unstretchable
string (physical pendulum).

If the pendulum swings with a small
mplitude @with the vertical, its motion
IS simple harmonic, where the restoring
force is the component of gravity along
the arc of the motion.

F(6) =ma, =-mgsiné

2
rT]I —Eii?i— ~ ——-rT1§J 69
2
d—9=—g6’ W= g; 2t =
dt’ | |

(b) An idealized simple pendulum

\ L String is
\ o
\ ' assumed to be
%
—7\ massless and
o unstretchable.
Bob 1s modeled
as a point mass.
L
F
’
F
”
=
L - i -—Ei — — -ll-i".
mg sin 0
\

The restoring force on the \‘\
bob 1s proportional to sin @, ”‘\
not to #. However, for small A
8, sin 6 = 6, so the motion is '\
approximately simple Im:'mcmic.;

g; T=£=27Z il
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Damped oscillations

Real-world systems have some
dissipative forces that decrease the
amplitude.

Such dissipative forces are typically
proportional to the speed v, and
appear in the force equation with
Inus sign:

2
F, =—-kx—bv, i i

= M—=-kx-b—
dt dt

The decrease in amplitude is called

damping and the motion is called

damped oscillation.

The mechanical energy of a damped
oscillator decreases continuously.
The general solution is:

x = Ae"®?™ cos(@'t + @)

O

\

— ) = 0.1\.% (weak damping force)

x =—b = O.M%(stronger damping force)

‘Y . A (bl2m)t

With stronger damping (larger b):

e The amplitude (shown by the dashed
curves) decreases more rapidly.

* The period T increases
(T, = period with zero damping).



Types of mechanical waves

« A mechanical wave Is a disturbance traveling through elastic
medium.

* Figure below illustrates transverse waves and longitudinal waves.

(@) Transverse wave on a string

/Motion of the wave

s Particles of the string As the wave passes, each

R particle of the string moves up
and then down, transversely to

the motion of the wave itself.

(b) Longitudinal wave in a fluid

N

forward and then back, parallel
to the motion of the wave itself.

/ \ As the wave passes, each
v ‘ _ v At particle of the fluid moves

(c) Waves on the surface of a liquid
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V' o / Surface particles of the liquid
' e e B A e T As the wave passes, each
= ] .4_!’ . N : o 5
- " particle of the liquid surface
moves in a circle.




Periodic waves

* For a periodic wave, each particle of the medium
undergoes periodic motion. The speed of the
wave IS not the same as the speed of the particles.

e The wavelength A of a periodic wave Is the length
of one complete wave pattern.

* The speed of any periodic wave of frequency f Is
v = Af.

» Example: The speed of sound in air at 20° C is 344 m/s.
What is the wavelength of a sound wave in air at 20° C if the
frequency Is 262 Hz?




Periodic transverse waves

* For the transverse waves shown here in Figures, the
particles move up and down, but the wave moves to
the right.

Motion of the wave Amplitude A

/

Amplitude A

" The SHM of the spring and mass generates a sinusoidal
wave in the string. Each particle in the string exhibits the
same harmonic motion as the spring and mass; the
amplitude of the wave is the amplitude of this motion.

This difference in direction of the waves and particles
Is why the wave is called a transverse wave.

Note that the restoring force is transverse to the
direction of the wave propagation.

I'he string is shown at time intervals of 3 period
for a total of one period 7. The highlighting
shows the motion ol one wavelength of the wave.

Oscillator Three points on the string
generating wave
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~" The wave advances
by one wavelength A
i during each period T.
i
Each point moves up and down in
place. Particles one wavelength apart

move in phase with each other.



Periodic longitudinal waves

* For the longitudinal waves shown here in
Figures, the particles oscillate back and forth
along the same direction that the wave moves.

* The restoring force (pressure) is in the same
direction as the wave propagation.

7
Forward motion of the plunger creates a compression (a zone of high density);
backward motion creates a rarefaction (a zone of low density).

Compression Rarefaction
: I I
Plunger ' ! !
oscillating === o
in SHM " |

F K—2A—>  wave slpeed

Wavelength A is the distance between corresponding points on successive cycles.

Longitudinal waves are shown at intervals of
- _
< I for one period T.

Plunger Two particles in the medium,
moving in one wavelength A apart
SHM
K —
| | i | X
t=0C= \ @ \ i
| \ J \
\ e
| | | \ ! \ i
[l il — \ @ '\ @
8 | \ | \
\ \
) it it
t=5T1I * ?
I I
| 8\ 1\
- \ |
B 8 r | \ *‘1
B\ - !
| i\ i\
4 \ )
t=3T [—I ‘ @
H B S
1\
S ] T T
1= = @ '@
855 L1 X
\ \
6 B i i -
=57 » o
\ n
I I
. N 1
_ 17 \ \
t=3TH $\ * \
l \ f \
| /A b Y
/ \ / \
=TE g ) \ @ \
s \ \
TS A< H_j
Particles oscillate The wave advances
with amplitude A. by one wavelength A

during each period T.



Mathematical description of a wave

« The wave function, y(x,t), gives a
mathematical description of a wave. In
this function, y is the displacement of a
particle at time t and position X.

* The wave function for a sinusoidal
ave moving in the +x-direction is
y(x,t) = Acos(kx — wt), where k =2n/4
Is called the wave number.

For transverse waves, y might
represent the height of the wave at
location x.

For longitudinal waves, y might
represent the pressure at location X.

The string is shown at time intervals of ¢ period
for a total of one period 7.

Oscillator Three points on the string,
generating wave one half-wavelength apart
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Derivatives of y: wave equation

Starting with  Y(x,t) = Acos(kx—at), take partial derivative with respect to
time to get y component of velocity:

v, (X,t) = 8ygt<,t) = wAsin (kx— ot)

Likewise, take another partial derivative to get y component of acceleration:

2
a,(xt) = YOU) _ 2 Acos (k- at) =~y (x,)
t
We can also take partial derivatives with respect to x (instead of t) to get:
o°y(x,t) _

v —k?*Acos (kx—at) =—k*y(x,t)

If we take the ratio of these two equations, we have:
o’y(xt)ylot? o 7
o’y(x,t)/ox*  k°

Rearranging gives the wave equation:
o’y(x,1) 1 d%y(x1)
OX° v: ot




Wave Interference and superposition

* Interference is the
result of overlapping
waves.

* Principle of super-
position: When two
more waves
overlap, the total
displacement is the
sum of the displace-
ments of the
Individual waves.

Study Figures at the
right.

As the pulses ove

string at any poin

rlap, the displacement of the
t 1s the algebraic sum of the

displacements due to the individual pulses.
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Normal modes of a string

 For ataut string fixed at

both ends, the possible
wavelengths are A, = 2L/n
and the possible frequencies
are f. = nv/2L = nf;, where
n=123 ...

. IS the fundamental
frequency, f, is the second
harmonic (first overtone), f,
IS the third harmonic
(second overtone), etc.

Figure illustrates the first
four harmonics.

(@) n = 1: fundamental frequency, f;
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(b) n = 2: second harmonic, f, (first overtone)
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(¢) n = 3: third harmonic, f; (second overtone)
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(d) n = 4: fourth harmonic, f, (third overtone)
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TYPES OF MUSCLES

e Skeletal muscle

- striated muscle tissue existing under control
of the somatic nervous system (voluntary
control)

ardiac muscle

- special striated muscle tissue of the heart

working automatically and under the influence
of autonomic nervous system (involuntarily)

e Smooth muscle

- non-striated muscle tissue activated by
autonomic nervous system, hormones, or
simply stretching




Skeletal muscle

attached to the bones for movement

several types of fibers (speed, stamina,
fatigue, force, motor unit size, structure...)

cells - long multi-nucleated cylinders -
the length of muscle cell is a few mm (human

sceletal muscle), the diameter is typically 100 -
150 um

cytoskeleton — supporting the cell shape



Structure of a Skeletal Muscle Surrounds each bundle

S PerirmysiLim Blood wessel
Hr.ﬁﬁ?-_ﬂ:'{ 'h..!
e ) Muscle fiber
; ' cell
A
it
. . N Fascicle
Tendaon Epirmysivim Endarmysiurm
Bundles Fascia Surrounds

of collagen  Becomes the muscle each cell
fibers sheath which fuses
with the tendon




Muscle fiber = muscle cell

« The sarcolemma — the cell membrane (plasma membrane)
of a muscle cell

- conduct stimuli

- an outer coat (thin layer of polysaccharides with
collagen fibrils) that fuses with a tendon fiber (they
collect into bundles to form the muscle tendons)

Sarcoplasm - cytoplasm with organelles
 Myofibrils - cylindrical organelles

— contractive elements the actin and myosin filaments
(the length a few um)

— organized in repeated subunits along the length of the
myofibril - sarcomeres

e Sarcoplasmic reticulum with T- tubules — internal
conductive system




Structure

Muscle fibre
Sarcoplasmic f of
reticulum et a muscle
cell

Myofibril
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http://upload.wikimedia.org/wikipedia/en/2/26/Myofibril.svg

Muscle Contraction

We know that muscle shortening corresponds to the
sliding of thin (actin) filaments past thick (myosin)
filaments

Most widely accepted mechanism for generation of
force Is the formation of connections between these
)Haments by crossbridges

Actin tilamend

Moveman! =-=—

—i » &
P o
QWET \ _
stroke . Crossbridge
Hin-;;-r,ew,\1
l—-#r'_H _ﬁ_h lllllllll _;_ﬁ F—-

Wyosin filament



Force-Velocity Relationship

Variables:

force 4 P force generated by a muscle

F V speed of muscle contraction

a, b, constants

Ay

shartening
speed

fl rate constant of crossbridge attachment

gl rate constant of crossbridge detachment

-4 -

rate of o rate of

shartening lenghtening Pmax maximum force




Hill Equation

Hill (1938) hypothesized specific relationships between the force
generated by a muscle and the speed at which a stimulated muscle
contracts under a given load. A stimulated muscle may contract to 1/3
Its size at a particular speed. When that muscle is attached to a load,
the speed and size to which it contracts decreases. In other words, as
the load increases, the muscle cannot lift the load as far. Hill

(P +a)(V+b) =c

where P describes the force generated by a muscle, V is the speed at
which a muscle contracts, and a, b, ¢ are constants. The constant a
describes the force expended to make the muscle contract, and b
describes the smallest contraction rate of the muscle.



We can interpret Hill's equation in the following way: as the force (P)
being exerted by the muscle increases, the contraction rate (V) must decrease
so that we maintain the constant, c. You can see that this makes sense by
facing a friend and placing your palm flat against his. Have your friend offer
resistence as you push his hand away. When your friend offers little
resistance, you can rapidly displace his hand (high V) with little force (low P).
When your friend offers maximal resistance, you will need maximum force
(high P) to slowly (low V) displace his hand.

The fofce (P) is now a function of the speed of contraction
(V, £m/sec) of a stimulated muscle. Hill estimated that ab =

/f1 where f1 is the rate constant (attachments per P= Cf1P mx ] P
second) for crossbridge connection as actin and myosin VD 44 /4
molecules combine to form crossbridges. The rate constant T 51

gl is the rate (detachments per second) for crossbridge
detachment. The constant a is approximately equal to 1/4
Pmax. Pmax is the force generated in the sarcomere Iif all
actin sites were attached to myosin sites.



We can plot g1 versus P to predict how
the force generated by a muscle depends on
the rate at which crossbridges detach. From
Hill's data we choose V as 2 cm/sec, f1 as
0.21 attachments/sec, Pmax as 57.4 g. wt.,
and c as 87.6 g wt cm/sec.

Notice in the graph, the force generated by
a muscle is high when the rate of crossbridge
detachmenyis low. When the rate of detachment
muscle is highly contracted and there
t deal of overlap between thick and thin
ts. As the rate of detachment increases,
the Mdegree of overlap decreases, as does the
forge generated by the muscle.
uxley later derived a more precise equation
ed on the same principles relating force to the
of crossbridge detachment.

Force (P, g wi)

Rate of crossbridge detachment {01, detachments/sec )

10



Hill's relationship can be rewritten as

= The Hill equation describes shortening
muscle:
(P + a)v - b(F)max - P)
= Here, a and b are constants,
IS maximum force,
18 force, and
IS velocity.

Hill Model

@ O = O Tl

-d

Velocity



Hill also suggested that the mechanics of muscle contraction is closely
linked to the muscle’s energy metabolism, because in his experiments
the same hyperbolic force—velocity relationship could be derived from
heat measurements, and the constant a was found to match closely to
an empirically derived thermal constant of shortening heat, a. However,
a was later found not to be a constant but dependent on shortening
ity and load. It appears, therefore, that the force—velocity behavior
muscle is not an unfiltered manifestation of energetic events
ogcurring inside the muscle, as Hill originally thought.




Control Questions

Examples of periodic motion.

. Characteristics of SHM.

. Periodic transverse waves.

. Periodic longitudinal waves.

. Normal modes of a string.

. Structure of a skeletal muscle.
. Structure of a muscle cell. Contraction.
. Hill equation.

. Heat production.
O Efficiency.

H@@N@thNH
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